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Abstract 

Type-2 Diabetes Mellitus is a growing epidemic that often leads to severe complications.  Effective preventive 
measures exist and identifying patients at high risk of diabetes is a major health-care need. 

The use of association rule mining (ARM) is advantageous, as it was specifically developed to identify associations 
between risk factors in an interpretable form. Unfortunately, traditional ARM is not directly applicable to survival 
outcomes and it lacks the ability to compensate for confounders and to incorporate dosage effects. In this work, we 
propose Survival Association Rule (SAR) Mining, which addresses these shortcomings. 

We demonstrate on a real diabetes data set that SARs are naturally more interpretable than the traditional 
association rules, and predictive models built on top of these rules are very competitive relative to state of the art 
survival models and substantially outperform the most widely used diabetes index, the Framingham score. 

Introduction 

Diabetes mellitus is a growing epidemic that affects 25.8 million people in the United States (8% of the 
population)4. Diabetes leads to significant medical complications including ischemic heart disease, stroke, 
nephropathy, retinopathy, neuropathy and peripheral vascular disease. Appropriate management of patients at risk 
with lifestyle changes and/or medications can decrease the risk of developing diabetes by 30% to 60% 6,12. 
Therefore, early identification of patients at risk of developing diabetes is therefore a major healthcare need. In 
response to this pressing need, numerous diabetes risk indices have been developed and some of them, most notably 
the Framingham score13, have gained acceptance in clinical practice. 

Existing diabetes indices largely assume that diabetes is independent of other diseases. As diabetes is part of the 
metabolic syndrome, it is particularly important to consider the possibility of interactions between various risk 
factors, many of which are also indicators of other diseases in the metabolic syndrome. Except for the most recent 
methods3, 8, 10, no diabetes index takes the interactions between the risk factors into account5. 

Association rule mining1 (ARM) is a technique that is specifically aimed at discovering interactions (more precisely, 
associations). In association rule mining, we first extract association patterns, which are co-occurring binary risk 
factors.  For example, we may discover the pattern that hypertension (high blood pressure) and hyperlipidemia (high 
cholesterol) frequently co-occur in patients. The frequent co-occurrence of these two conditions may indicate that 
they are associated with each other.  We have formal tests to determine whether a presumed association is 
significant or a mere coincidence11.  If the pattern is predictive of an outcome of interest—diabetes in our case,⎯we 
can convert the pattern into an association rule.  An association rule is an implication, where a pattern of co-
occurring conditions implies increased risk of diabetes. Continuing with our example, we may find that among 
patients presenting with hypertension and hyperlipidemia, 13.3% have diabetes, which is 1.47 times higher than in 
the general population of our study, making this pattern predictive of diabetes. Association rule mining is rapidly 
gaining popularity in health informatics due to the ease of interpretation, the ability to discover potentially 
interesting associations among risk factors, and since the results are rules, they are amenable to implementation in a 
clinical decision support system.  The above three recent metabolic syndrome studies3, 8,10 all used association rule 
mining. 

Association rule mining, in its current form, is not applicable to survival outcomes in a straightforward fashion. 
Association rules are often used for quantifying the risk that the constituent risk factors confer on the patient 
subpopulation using the simple method we presented earlier.  Unfortunately, this approach is incorrect, as it fails to 
account for age as a risk factor: the hypertensive, hyperlipidemic subpopulation is older than the population without 
these conditions. A third shortcoming of the traditional association rule mining paradigm lies in its inability to 
capture dosage effects. Many risk factors in diabetes can have two effects: a dosage effect, where a unit increase in a 
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measurement is accompanied by a proportional increase (or decrease) in the risk; and a threshold effect, which arises 
when a measurement exceeding a threshold causes disproportionate increase in the risk. Figure 1 illustrates the 
effect of systolic blood pressure (SBP) on the risk of DM. The solid line depicts the smoothed risk of DM as a 
function of SBP.  When SBP < 140 mmHg (the ADA2 recommended cutoff), the average risk of DM is 
approximately 9%, which coincides with the risk in the general population.  When SBP exceeds 140 mmHg, the risk 
is substantially higher on average.  The dashed line in the Figure represents this threshold effect and it is emblematic 
of  association rule mining’s view of SBP.  It is clear from the Figure, that besides the threshold effect, a dosage 
effect also exists and ignoring this dosage effect leads to information loss.  Association rule mining in its current 
form operates on the threshold effects and possesses no facility to incorporate dosage effects. 

 

 

In this work, we propose Survival Association Rule Mining, which extends the traditional association rule mining 
paradigm to address the above shortcomings. The key idea is transform the non-parametric and model-free 
association rule mining into a semi-parametric modeling paradigm. The centerpiece of this paradigm is the survival 
association rule (SAR), which is an association pattern wrapped into a survival model. The association pattern 
within the SAR captures the potential interaction among multiple binary risk factors (threshold effects) in a non-
parametric fashion. The survival model around the association pattern links the predictors (covariates and the 
association rule) to the survival outcome, and provides a parametric ``interface’’ to the rule that we can exploit 
towards adjustments for confounders and towards the incorporation of dosage effects.  Thus a SAR preserves the 
flexibility of traditional association rule mining while it offers the advantages (e.g. adjustment for factors) that 
parametric models offer. 

We applied the proposed methodology to a real clinical data set collected at Mayo Clinic. We show that the 
proposed approach identified clinically relevant association rules, and estimated the risk associated with the risk 
factors in the rules more correctly than traditional association rules in a manner that makes interpretation even 
simpler. We have also built predictive models for individual patients and we show that the resulting model performs 
as well as the state-of-the-art survival models and that the model-based association rules far outperformed the most 
widely adopted diabetes risk score, the Framingham score. 
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Figure 1. Illustration of the threshold effect.  Risk of DM versus systolic blood pressure (SBP) is plotted for 
patients with SBP between 100 and 150 mmHg (90% of the population). When SBP is less than 140, the risk of 
DM on average is the same as the risk in the general population.  Patients with SPB > 140, have a substantially 
higher risk on average. 
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Background 

Association rule mining  

Consider a set of binary variables, called items, including abnormal laboratory results, history of diseases and 
whether a particular medication was prescribed.  Let δj denote an item indicating whether patient j had developed 
diabetes.  

An itemset (or association pattern) is simply a set of items. An itemset covers (or applies to) a patient, if the 
patient presents all the conditions in the itemset. The support of an itemset is the number of patients it applies to.  
The coverage vector XI of an itemset I is a vector with its j element signifying whether I applies to the patient: it 
takes the value 1 if I covers patient j; 0 otherwise. 

A survival association rule is an implication defined by an itemset I, stating that patients who suffer from the 
conditions in I have a significantly higher risk of diabetes than the average patient in our population.  The increase in 
the risk for this subpopulation is quantified by the relative risk.  Let E denote the expected and O the observed 
number of diabetes events (O takes the value 0 or 1) for each patient.  The relative risk is defined as RR=O/E: 
patients who present the conditions in I faces RR times higher risk (number of diabetes events) than those who lack 
at least one condition. 

Survival Models 

Survival models are statistical models for event-based data with known time to events.  Let tj denote the follow-up 
time for patient j.  The follow-up time is the time from the beginning of study until the patient progresses to 
diabetes or until he is no longer followed. Let δj denote whether patient j developed diabetes before (or exactly at) 
time tj.  The hazard λj(t) is the instantaneous probability that patient j progresses to diabetes exactly at time t. 

Cox Proportional Hazard Models are survival models that estimate the hazard λj(t) for patient j at time t based on a 
covariate matrix Z and a baseline hazard λ0(t) that is common to all patients. The hazard is modeled as 

, 

where β is a coefficient vector to be estimated and the baseline hazard λ0(t) is unspecified. The quantity  

 

is called the risk. For a patient j, the expected number of events (progression to diabetes) can be estimated based on 
his risk rj as 

Λ j (t) =
δk exp(rj )

exp(ri )ti≥tk
∑k:tk≤t j

∑ . 

The difference between the observed Oj and estimated number Λj of events (at the end of study) 

M j = Oj −Λ j  

is the Martingale residual. 

The coefficient vector β is estimated through maximizing the partial likelihood.  The partial likelihood of the data 
is defined as  

PL(rj ) =
exp(rj )

exp(rk )
k:tk≥t j
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where k is iterating through the patients who are at risk at time tj. Once a patient progresses to diabetes, he is no 
longer at risk and he is no longer followed as far as this model is concerned. 

Cox Proportional Hazards Models are fit by maximizing PL(r), or equivalently, by minimizing the negative log 
likelihood  of the data 

λ j (t) = λ0 (t)exp Z jβ( )

rj = Z jβ
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(r) = − logPL(r) . 

The minimization can be carried out using Fisher Scoring for all variables at once, or stage-wise through gradient 
descent optimization, where in each iteration (stage), a new predictor is added. In the following section, we review 
the latter alternative in detail. 

Gradient Boosting for Cox Proportional Hazards Models 

Gradient boosting7,9 minimizes iteratively through gradient descent optimization. Given a model in the ith 
iteration, it is extended with a fitted model m(i) that minimizes  

r(i+1) = r(i) −γm(i) ≈ r(i) −γ
∂(r)
∂γ

. 

The fitted model m(i) minimizes when it is most aligned with the negative gradient of the negative log likelihood 
function evaluated at r(i), which is the Martingale residual defined earlier.  In our application, m(i) will be a linear 
combination of covariates or a single itemset (represented by its coverage vector).  

Methods 

 
 

 

We start the description of our methodology through presenting an overview in Figure 2. Let Z denote a covariate 
matrix of confounders (e.g. age and sex), U a covariate matrix of vitals and laboratory results and X an item matrix, 
contains the items representing medication prescriptions, abnormal laboratory results and the presence of co-morbid 
diagnosis codes.  Note that U contains the continuous version and X the binary version of the vitals and the 
laboratory measurements. Let t denote the follow-up time, which is the time to developing diabetes or last follow up, 
and δ denote the diabetes outcome at last follow-up. The jth row of the matrices Zj , Xj , Uj and the jth element of  tj 
and δj correspond to the same patient for all j.   

We first build the framework model SF, which provides a linkage between the predictors and the survival outcome 
(t and δ) and it also allows us to correct for the confounders in Z 

SF : Surv(δ, t) = Zβ . 

We use the framework model to calculate the expected number E of diabetes events for each patient.  By comparing 
the expected number of events to the observed events (δ), we arrive at the martingale residual M.  The martingale 






PID! δ" t" Confounders Z"

Age! Gender!

001! Y! 1.8! 55! M!

002! N! 2.5! 19! F!

…! …! …!

M" Item Matrix X"

htn! high SBP! …

Y!

Y! Y!

…!

Covariate Matrix U"

SBP! trigl.! …!

120! 190!

118! 220!

…!
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M=δ%E&
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Rules))

with)Dosage)Effects)

Figure 2. Overview of the methodology 
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residual is the excess risk of diabetes that cannot be explained by follow-up time or by the confounders, but it can be 
at least partially explained by the covariates (binary or continuous). 

With the set of association patterns in hand, we construct the survival association rules (SARs).  A SAR is an 
extension of the framework model by a single association pattern (or itemset) I 

SA : Surv(δ, t) = Zβ − XIγ , 

where XI is the coverage vector of I and γ is its coefficient.  Note that there is a single framework model, but there 
are multiple SARs; one SAR for each association pattern. 

It is well known that a combinatorially large number of association patterns can be discovered from a database and 
many of these patterns may not explain the martingale residual significantly. Constructing a SAR for each 
discovered pattern is wasteful and computationally infeasible.  We only construct a SAR from those patterns that 
significantly improve the fit of the framework model.   

Since the survival association rule SA is a model fully nested inside the framework model SF, the significance of I 
can be assessed through a likelihood ratio test.  The test statistic 2 log(F − A )  follows Chi square distribution with 1 
degree of freedom. The likelihood ratio test requires that SA be fit exactly. 

Fitting a survival model exactly is computationally expensive. In the following section of this work, we develop a 
metric, gain, based on gradient boosting that is almost perfectly correlated with the above likelihood ratio test 
statistic, does not require a survival model to be fit exactly and can be computed in a single scan of the coverage 
vector.  Gain allows us to order the association patterns based on their significance and not fit a survival model 
exactly for the vast majority of the association patterns that would be found non-significant by the likelihood ratio 
test. 

Once the survival association rules are computed, we can incorporate dosage effects in a relative straightforward 
manner.  Suppose the survival association rule includes items that are dichotomized version of quantitative measures 
that we also have access to in U. Let UI denote the columns of U that correspond to such items. We can incorporate 
dosage effects by extending the survival association rule by UI with coefficients α 

SD : Surv(δ, t) = Zβ − XIγ −UIα . 

Deriving the gain metric 

In this section, we derive gain, the metric that allows us to identify significant association patterns without having to 
fit a survival model to all discovered association patterns.  

Given the fitted framework model SF, with coefficient vector β, let rF denote the predicted risk rF=Zβ. Suppose we 
are also given an association pattern I with coverage vector XI. We can obtain the risk vector rA as rA = rF −γXI ,
where γ is a scalar to be estimated.  The typical method of finding γ is line-search to minimize (rA ) . An alternative 
method can be derived from the Taylor expansion of   

(r − XIγ ) = (r)−γ T ∂(r)
∂r

+
1
2
γ T ∂

2(r)
∂r2 γ = (r)−γ T XI

∂(r)
∂γ

+
1
2
γ T XI

T ∂
2(r)
∂γ 2 XIγ . 

By setting r=rA, γ=0 and by simplifying the Hessian ∂2(r) /∂γ 2 to the identity matrix, we can rewrite the Taylor 
expansion as 

(rA − XIγ ) =
∂(rA )
∂γ

− XIγ
#

$
%

&

'
(

T
∂(rA )
∂γ

− XIγ
#

$
%

&

'
(= M − XIγ( )T M − XIγ( ) , 

which represents the gradient descent optimization as a least squared problem.  The vector M denotes the vector of 
martingale residuals. The least squared representation allows us to solve for γ analytically, yielding the solution 
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. 

We define gain as the reduction in the sum squared error due to adding I 

. 

Gain is almost perfectly correlated with the likelihood ratio test statistic yet it can be computed in a single scan of 
the coverage vector.  While the gain cannot be used to assess whether an itemset improves the fit significantly (the 
p-value calculated based on G(I) would be a poor estimate), it can be used to rank the itemsets almost perfectly 
based on their significance. 

Strategy for Discovering Association Rules 

The high correlation between the gain G(I) and the likelihood ratio test statistics suggests the following strategy to 
discover significant association patterns effectively. The high correlation implies that if for a pair of association 
patterns, one has higher gain, it also has a higher likelihood ratio statistic and consequently, higher significance 
(lower p-value). We can also find the smallest gain g, such that the corresponding association patterns still 
significantly improves the fit of the framework model. Then for all patterns that have G(I)<g, the pattern is not 
significant. This gain g can be found through binary search, which requires fitting log2 R survival models, where R is 
the number of discovered association patterns. This means that we need to fit survival models for at most log2R 
insignificant association patterns.  

Making Predictions for Individual Patients 

Although the main purpose of (survival) association rule mining is to discover interconnections between various risk 
factors that affect a patient’s progression to diabetes, it is often useful to use the survival association rules as a 
diabetes index, where we need to predict the risk of progression for an individual patient.  Since the survival 
association rules are survival models, they can readily predict the risk for each patient that they apply to. The only 
difficulty is that multiple rules may apply to the same patient.  In that case predictions can be made using the most 
specific rule, that is, the rule that includes the highest number of conditions that the patient presents.  In the case of 
ties (namely, when multiple applicable rules have the same number of conditions), we can take the average of the 
risks predicted by these rules. 

Results 

In this section, we demonstrate the above concepts on a clinical data set collected for a study at Mayo Clinic 
between 2005 and 2010. We will show that the survival association rules are more interpretable than the traditional 
association rules when used for assessing the risk of a patient subpopulation; and we also show that survival 
association rules are as predictive as survival models built on all predictors and substantially more predictive than 
the Framingham score.  

 
Measure Explanation Descriptive Abnormal Missing 

  mean sd count % count % 
age  52.25 16.62 0 0.00 0 0.00 
sbp Systolic blood pressure 128.23 15.86 4573 0.21 1216 0.06 
dbp Diastolic blood pressure 77.16 9.13 1980 0.09 1216 0.06 
tchol Total cholesterol 199.44 30.95 9465 0.43 2919 0.13 
hdl High-density lipoprotein 53.65 13.65 5003 0.23 3004 0.14 
ldl Low-density lipoprotein 117.21 26.79 13856 0.63 3063 0.14 
bmi Body mass index 28.59 5.23 5941 0.27 4508 0.21 
trigl Triglycerides 139.38 67.48 6518 0.30 2972 0.14 
 

The study is comprised of 21,981 patients. These are pre-diabetic patients who lived in Olmstead Co, MN in 2005. 
We established their pre-diabetic status by retrospectively collecting their fasting glucose measurement for the 
period of 1999/01/01 through 2004/12/31. These patients had at least one glucose measurement between 101 and 

γ = XI
T XI( )

−1
XI

T ∂(r)
∂γ

= XI
T XI( )

−1
XI

T M

G(I ) = XI
T M( )

T
XI

T XI( )
−1

XI
T M

Table 1. Descriptive Statistics for some of the continuous measures 
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125 mg/dl and no measurements in excess of 126 mg/dl during this period. Patient with an established diabetes 
diagnosis during this period were excluded.  

For our cohort, we collected demographic information (age, gender), vitals and laboratory results, diagnosis codes 
related to the metabolic syndrome and prescriptions. The most important variables are described in Tables 1 and 2. 
For association rule mining, the continuous variables were dichotomized at thresholds recommended by the ADA 
guidelines2. 

 

 

Predictor Abbr. % 
demographic 

gender male genderM 0.49 
diagnoses 

hypertension htn 0.31 
hyperlipidemia hyperlip 0.37 
obese obese 0.20 
ischemic heart disease ihd 0.10 
peripheral vascular disease pvd 0.02 

medications 
ACE/ARB acearb 0.13 
beta blocker bb 0.17 
Ca channel blocker ccb 0.07 
diuretic diuret 0.13 
fibrate fibra 0.02 
statin statin 0.18 
aspirin aspirin 0.29 

 

RR sup supD itemset 
2.35 293 62 hyperlip trigl fibra 
2.29 301 62 trigl fibra 
2.27 449 92 htn hyperlip bmi trigl aspirin 
2.17 686 134 hyperlip bmi trigl aspirin 
2.15 563 109 htn bmi trigl aspirin 
2.13 496 95 htn hyperlip bmi trigl statin 
2.10 502 95 htn bmi trigl statin 
2.09 371 70 hyperlip fibra 
2.04 669 123 htn obese hyperlip trigl 
2.03 907 166 htn hyperlip bmi trigl 

 

Results from Traditional Association Rule Mining 

First, we present results obtained from traditional association rule mining.  We discovered 2,054 association 
patterns. We filtered them based on predictive significance11 and component independence11.  A pattern is predictive 
significant if the conditional probability of diabetes given the itemset is statistically significantly different from the 
prior probability of diabetes; and an itemset I = AB is component independent if it can be divided into sub-itemsets 

Table 2. Definition, abbreviation and prevalence of the most important binary variables 

Table 3. Ten traditional association rules with the highest relative risk 
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(components) A and B that are statistically independent. Rules that are not predictive are clinically irrelevant and 
rules that are component independent are superfluous.  After the filtering, we had 156 rules remaining.  We refer to 
these rules as the significant (traditional) association rules. 

Table 3 depicts the ten significant traditional association rules with the highest relative risk.  The interpretation of 
(say) the first rule appears straightforward: a patient who is hyperlipidemic, has abnormally high triglicerides and 
takes fibrates faces on average 2.35 times higher risk of progression to diabetes than the average patient in our 
cohort. Unfortunately, this statement is true only if the patients we apply this rule to have the same age and gender 
distribution as the above subpopulation. This condition, which is often ignored, makes the application of the rule 
less practical. 

Comparison of Traditional Association Rules and Survival Association Rules 

We also extracted survival association rules from the data set. All 156 rules were found to significantly improve the 
fit of the framework model (at Bonferroni-adjusted .05 significance level).   

The interpretation of the survival association rules is as follows. Hyperlipidemic patients with high triglyceride 
levels taking fibrates face a relative risk of 2.31, i.e. they have a 2.31 times higher risk of progression to diabetes 
than a patient with the same age and gender who does not have at least one of the above conditions.  This statement 
is better suited for clinical application than the one for the traditional association rule. 

In the above example, the difference in the relative risk estimate between the traditional and survival association 
rules is minimal (2.35 vs 2.31).  The are not always minimal; in some cases they can become substantial. In Figure 
3, we present a comparison: each point in the figure corresponds to one of the 156 survival association rules with the 
horizontal axis depicting the relative risks estimated by the traditional association rules and the vertical axis by the 
survival association rules. 

 

 
In general the relative risk estimates are consistent between the two types of association rules: if survival association 
rule mining estimates a pattern to have high relative risk, traditional association rule mining also estimates it to have 
high relative risk.  There are some notable exceptions, however.  For example, the rule {htn, hyperlip, sbp, acearb, 
statin} carries a relative risk of 1.78 when estimated by traditional association rules and 1.54 when estimated by 
survival association rules.  The former estimate corresponds to the 83rd percentile of the relative risks (only 27% of 
the traditional association rules predict a higher relative risk), while the latter estimate corresponds to the 49th 
percentile (more than half of the rules predict a higher relative risk).  The discrepancy stems from the substantial age 
difference between the affected subpopulation (mean age is 69.8) and the unaffected subpopulation (mean age is 
51.8). The relative risk estimate by traditional association rule mining for this subpopulation is misleading. 
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Evaluating the Predictive Capability of Survival Association Rules 

Although our primary goal was to identify combinations of risk factors that confer a significantly elevated risk of 
progression to diabetes onto the patients, in this section, we present results in which we used the survival association 
rules as a diabetes index.  The index score is the predicted risk of diabetes. 

To assess the performance of the rules as a diabetes index, we performed 100 replications of the following 
procedure.  We discovered the association patterns and fit the survival association rules on 80% of the patients 
(training set) and made predictions for the remaining 20%. A Lasso-penalized survival model was also constructed.  
Lasso-penalized models require that we tune a penalty parameter, to which end, we used 20% percent of the training 
set as a validation set. The evaluation metric is the concordance of the prediction with the true outcome. 
Concordance is the probability that for a pair of patients, where one progressed to diabetes and one did not, the 
patient who progressed has higher predicted risk. 

 

In Figure 4, we present the performance of a number of algorithms and indices.  The first three are the Framingham 
score and two of its variants: Fram Logit is the logistic regression form of the Framingham score with the original 
coefficients and Fram Refit is the logistic regression form with coefficients fit to our data.  `FW’ is the framework 
model, SARM and `SARM+dosage’ correspond to survival association rules with and without dosage effects, 
respectively. `Lasso Bin’ and `Lasso All’ are Lasso-penalized survival models built on all binary predictors and all 
predictors (binary as well as quantitative). `All’ is an unpenalized survival model that uses all predictors.  

We can make the following observations.  First, by comparing the framework model ‘FW’ with ‘SARM’, we can 
see that adding the association patterns to the framework model substantially improves the predictive performance.  
Comparing `SARM’ with `SARM+dosage’ demonstrates that incorporating dosage effects into the survival 
association rules substantially increased the models’ predictive capability. Third, despite the very simple strategy we 
applied to make predictions for the individual patients, `SARM’ performed as well as the state-of-the-art Lasso 
model `Lasso Bin’. Fourth, comparing `SARM+dosage’ to `All’ and `Lasso All’ is possible but not entirely fair, as 
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Figure 4. Comparing the concordance of the prediction by a number of risk models with the true outcome in 100 
replications.  The models used are Framingham Score, the logistic version of the Framingham score with the 
original coefficients (Fram Logit), the logistic version of the Framingham Score with coefficients re-fit to our data 
(Fram Refit), framework model (FW), Surivival association rules without dosage effect (SARM), and SAR with 
dosage effects (SARM+doage), Lasso-penalized survival models on all binary predictors (Lasso Bin), unpenalized 
survival model on all variables (All), and Lasso-penalized survival model on all variables (Lasso All) 

 

1301



`All’ and `Lasso All’ are more flexible models than `SARM+dosage’: `SARM+dosage’ only compensates for the 
dosage effect of risk factors that are present in the association pattern, while the `All’ models can incorporate all 
dosage effects.  Despite this difference, `SARM+dosage’ performed identically to the unpenalized `All’ model but 
performed worse than the penalized `Lasso All’ model.  This result cautions us that fitting dosage effects to small 
sub-population can lead to model overfitting and in the future, we will consider penalized survival association rules.  
Lastly, survival association rules, with or without dosage effects alike, substantially outperformed all three variants 
of the Framingham score that we considered. 

Summary and Conclusion 

Association rule mining is rapidly becoming a popular technique to analyze the interconnections between diseases 
and risk factors in a relatively interpretable form. In this work, we have presented an extension to the traditional 
association rule mining paradigm, which allows for (i) handling survival outcomes, (ii) making adjustment for 
confounders and (iii) incorporating dosage effects. We have shown that due to the adjustments, our rules are more 
interpretable and more suitable for risk assessment.  We have also shown that incorporating dosage effects 
substantially improves the predictive capability of the rules. To make predictions for individual patients, we applied 
a very simple strategy: for each patient, we estimated his risk of progression using the most specific rule that applies 
to him.  Naturally, building a penalize survival model on top of the survival association rules would be more 
appropriate for making predictions for individual patients, our goal was to demonstrate that even with this simple 
strategy, the risk estimates compare well with more flexible survival models, even with state-of-the-art Lasso-
penalized survival models. The survival association rules substantially outperformed the popular Framingham score.   
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